Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 333
Filtrar
2.
Hum Genomics ; 18(1): 21, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414044

RESUMO

BACKGROUND: Single-nucleotide variants (SNVs) within gene coding sequences can significantly impact pre-mRNA splicing, bearing profound implications for pathogenic mechanisms and precision medicine. In this study, we aim to harness the well-established full-length gene splicing assay (FLGSA) in conjunction with SpliceAI to prospectively interpret the splicing effects of all potential coding SNVs within the four-exon SPINK1 gene, a gene associated with chronic pancreatitis. RESULTS: Our study began with a retrospective analysis of 27 SPINK1 coding SNVs previously assessed using FLGSA, proceeded with a prospective analysis of 35 new FLGSA-tested SPINK1 coding SNVs, followed by data extrapolation, and ended with further validation. In total, we analyzed 67 SPINK1 coding SNVs, which account for 9.3% of the 720 possible coding SNVs. Among these 67 FLGSA-analyzed SNVs, 12 were found to impact splicing. Through detailed comparison of FLGSA results and SpliceAI predictions, we inferred that the remaining 653 untested coding SNVs in the SPINK1 gene are unlikely to significantly affect splicing. Of the 12 splice-altering events, nine produced both normally spliced and aberrantly spliced transcripts, while the remaining three only generated aberrantly spliced transcripts. These splice-impacting SNVs were found solely in exons 1 and 2, notably at the first and/or last coding nucleotides of these exons. Among the 12 splice-altering events, 11 were missense variants (2.17% of 506 potential missense variants), and one was synonymous (0.61% of 164 potential synonymous variants). Notably, adjusting the SpliceAI cut-off to 0.30 instead of the conventional 0.20 would improve specificity without reducing sensitivity. CONCLUSIONS: By integrating FLGSA with SpliceAI, we have determined that less than 2% (1.67%) of all possible coding SNVs in SPINK1 significantly influence splicing outcomes. Our findings emphasize the critical importance of conducting splicing analysis within the broader genomic sequence context of the study gene and highlight the inherent uncertainties associated with intermediate SpliceAI scores (0.20 to 0.80). This study contributes to the field by being the first to prospectively interpret all potential coding SNVs in a disease-associated gene with a high degree of accuracy, representing a meaningful attempt at shifting from retrospective to prospective variant analysis in the era of exome and genome sequencing.


Assuntos
Splicing de RNA , Inibidor da Tripsina Pancreática de Kazal , Humanos , Inibidor da Tripsina Pancreática de Kazal/genética , Estudos Retrospectivos , Splicing de RNA/genética , Éxons/genética , Sequência de Bases , Processamento Alternativo/genética
3.
Genet Med ; 26(5): 101087, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38288683

RESUMO

PURPOSE: Interneuronopathies are a group of neurodevelopmental disorders characterized by deficient migration and differentiation of gamma-aminobutyric acidergic interneurons resulting in a broad clinical spectrum, including autism spectrum disorders, early-onset epileptic encephalopathy, intellectual disability, and schizophrenic disorders. SP9 is a transcription factor belonging to the Krüppel-like factor and specificity protein family, the members of which harbor highly conserved DNA-binding domains. SP9 plays a central role in interneuron development and tangential migration, but it has not yet been implicated in a human neurodevelopmental disorder. METHODS: Cases with SP9 variants were collected through international data-sharing networks. To address the specific impact of SP9 variants, in silico and in vitro assays were carried out. RESULTS: De novo heterozygous variants in SP9 cause a novel form of interneuronopathy. SP9 missense variants affecting the glutamate 378 amino acid result in severe epileptic encephalopathy because of hypomorphic and neomorphic DNA-binding effects, whereas SP9 loss-of-function variants result in a milder phenotype with epilepsy, developmental delay, and autism spectrum disorder. CONCLUSION: De novo heterozygous SP9 variants are responsible for a neurodevelopmental disease. Interestingly, variants located in conserved DNA-binding domains of KLF/SP family transcription factors may lead to neomorphic DNA-binding functions resulting in a combination of loss- and gain-of-function effects.

4.
Am J Med Genet A ; 194(5): e63532, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38192009

RESUMO

Alpha-mannosidosis is a rare autosomal recessive lysosomal storage disorder caused by biallelic mutations in the MAN2B1 gene and characterized by a wide clinical heterogeneity. Diagnosis for this multisystemic disorder is confirmed by the presence of either a deficiency in the lysosomal enzyme acid alpha-mannosidase or biallelic mutations in the MAN2B1 gene. This diagnosis confirmation is crucial for both clinical management and genetic counseling purposes. Here we describe a late diagnosis of alpha-mannosidosis in a patient presenting with syndromic intellectual disability, and a rare retinopathy, where reverse phenotyping played a pivotal role in interpreting the exome sequencing result. While a first missense variant was classified as a variant of uncertain significance, the phenotype-guided analysis helped us detect and interpret an in-trans apparent alu-element insertion, which appeared to be a copy number variant (CNV) not identified by the CNV caller. A biochemical analysis showing abnormal excretion of urinary mannosyloligosaccharide and an enzyme assay permitted the re-classification of the missense variant to likely pathogenic, establishing the diagnosis of alpha-mannosidosis. This work emphasizes the importance of reverse phenotyping in the context of exome sequencing.


Assuntos
alfa-Manosidose , Humanos , alfa-Manosidose/diagnóstico , alfa-Manosidose/genética , Variações do Número de Cópias de DNA/genética , alfa-Manosidase/genética , Mutação de Sentido Incorreto/genética , Fenótipo
5.
Cells ; 13(2)2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38247876

RESUMO

Cystic Fibrosis (CF) is present due to mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene, the most frequent variant being p.phe508del. The CFTR protein is a chloride (Cl-) channel which is defective and almost absent of cell membranes when the p.Phe508del mutation is present. The p.Phe508del-CFTR protein is retained in the endoplasmic reticulum (ER) and together with inflammation and infection triggers the Unfolded Protein Response (UPR). During the UPR, the Activating Transcription Factor 6 (ATF6) is activated with cleavage and then decreases the expression of p.Phe508del-CFTR. We have previously shown that the inhibition of the activation of ATF6 alleviates the p.Phe508del-CFTR defects in cells overexpressing the mutated protein. In the present paper, our aim was to inhibit the cleavage of ATF6, and thus its activation in a human bronchial cell line with endogenous p.Phe508del-CFTR expression and in bronchial cells from patients, to be more relevant to CF. This was achieved by inhibiting the protease MBTP1 which is responsible for the cleavage of ATF6. We show here that this inhibition leads to increased mRNA and p.Phe508del-CFTR expression and, consequently, to increased Cl-efflux. We also explain the mechanisms linked to these increases with the modulation of genes when MBTP1 is inhibited. Indeed, RT-qPCR assays show that genes such as HSPA1B, CEBPB, VIMP, PFND2, MAPK8, XBP1, INSIG1, and CALR are modulated. In conclusion, we show that the inhibition of MBTP1 has a beneficial effect in relevant models to CF and that this is due to the modulation of genes involved in the disease.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Pró-Proteína Convertases , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Fatores de Transcrição , Serina Endopeptidases
6.
Pancreatology ; 23(8): 957-963, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37949771

RESUMO

BACKGROUND: Genetic predisposition is crucial in the pathogenesis of early-onset chronic pancreatitis (CP). So far, several genetic alterations have been identified as risk factors, predominantly in genes encoding digestive enzymes. However, many early-onset CP cases have no identified underlying cause. Chymotrypsins are a family of serine proteases that can cleave trypsinogen and lead to its degradation. Because genetic alterations in the chymotrypsins CTRC, CTRB1, and CTRB2 are associated with CP, we genetically and functionally investigated chymotrypsin-like protease (CTRL) as a potential risk factor. METHODS: We screened 1005 non-alcoholic CP patients and 1594 controls for CTRL variants by exome sequencing. We performed Western blots and activity assays to analyse secretion and proteolytic activity. We measured BiP mRNA expression to investigate the potential impact of identified alterations on endoplasmic reticulum (ER) stress. RESULTS: We identified 13 heterozygous non-synonymous CTRL variants: five exclusively in patients and three only in controls. Functionality was unchanged in 6/13 variants. Four alterations showed normal secretion but reduced (p.G20S, p.G56S, p.G61S) or abolished (p.S208F) activity. Another three variants (p.C201Y, p.G215R and p.C220G) were not secreted and already showed reduced or no activity intracellularly. However, intracellular retention did not lead to ER stress. CONCLUSION: We identified several CTRL variants, some showing potent effects on protease function and secretion. We observed these effects in variants found in patients and controls, and CTRL loss-of-function variants were not significantly more common in patients than controls. Therefore, CTRL is unlikely to play a relevant role in the development of CP.


Assuntos
Quimases , Pancreatite Crônica , Humanos , Quimases/genética , Predisposição Genética para Doença , Mutação , Pancreatite Crônica/genética , Pancreatite Crônica/metabolismo , Fatores de Risco
7.
Pancreatology ; 23(5): 491-506, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37581535

RESUMO

BACKGROUND: PRSS1 was the first reported chronic pancreatitis (CP) gene. The existence of both gain-of-function (GoF) and gain-of-proteotoxicity (GoP) pathological PRSS1 variants, together with the fact that PRSS1 variants have been identified in CP subtypes spanning the range from monogenic to multifactorial, has made the classification of PRSS1 variants very challenging. METHODS: All currently reported PRSS1 variants (derived primarily from two databases) were manually reviewed with respect to their clinical genetics, functional analysis and population allele frequency. They were classified by variant type and pathological mechanism within the framework of our recently proposed ACMG/AMP guidelines-based seven-category system. RESULTS: The total number of distinct germline PRSS1 variants included for analysis was 100, comprising 3 copy number variants (CNVs), 12 5' and 3' variants, 19 intronic variants, 5 nonsense variants, 1 frameshift deletion variant, 6 synonymous variants, 1 in-frame duplication, 3 gene conversions and 50 missense variants. Based upon a combination of clinical genetic and functional analysis, population data and in silico analysis, we classified 26 variants (all 3 CNVs, the in-frame duplication, all 3 gene conversions and 19 missense) as "pathogenic", 3 variants (missense) as "likely pathogenic", 5 variants (four missense and one promoter) as "predisposing", 13 variants (all missense) as "unknown significance", 2 variants (missense) as "likely benign", and all remaining 51 variants as "benign". CONCLUSIONS: We describe an expert classification of the 100 PRSS1 variants reported to date. The results have immediate implications for reclassifying many ClinVar-registered PRSS1 variants as well as providing optimal guidelines/standards for reporting PRSS1 variants.


Assuntos
População do Leste Asiático , Pancreatite Crônica , Humanos , Alelos , Frequência do Gene , Predisposição Genética para Doença , Mutação/genética , Pancreatite Crônica/genética , Pancreatite Crônica/patologia , Tripsina/genética , Tripsinogênio/genética , China , França
8.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37445855

RESUMO

More than 2000 variations are described within the CFTR (Cystic Fibrosis Transmembrane Regulator) gene and related to large clinical issues from cystic fibrosis to mono-organ diseases. Although these CFTR-associated diseases have been well documented, a large phenotype spectrum is observed and correlations between phenotypes and genotypes are still not well established. To address this issue, we present several regulatory elements that can modulate CFTR gene expression in a tissue-specific manner. Among them, cis-regulatory elements act through chromatin loopings and take part in three-dimensional structured organization. With tissue-specific transcription factors, they form chromatin modules and can regulate gene expression. Alterations of specific regulations can impact and modulate disease expressions. Understanding all those mechanisms highlights the need to expand research outside the gene to enhance our knowledge.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fatores de Transcrição/metabolismo , Expressão Gênica , Cromatina , Regulação da Expressão Gênica
9.
Pancreatology ; 23(5): 507-511, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37270400

RESUMO

Mutations in the PNLIP gene have recently been implicated in chronic pancreatitis. Several PNLIP missense variants have been reported to cause protein misfolding and endoplasmic reticulum stress although genetic evidence supporting their association with chronic pancreatitis is currently lacking. Protease-sensitive PNLIP missense variants have also been associated with early-onset chronic pancreatitis although the underlying pathological mechanism remains enigmatic. Herein, we provide new evidence to support the association of protease-sensitive PNLIP variants (but not misfolding PNLIP variants) with pancreatitis. Specifically, we identified protease-sensitive PNLIP variants in 5 of 373 probands (1.3%) with a positive family history of pancreatitis. The protease-sensitive variants, p.F300L and p.I265R, were found to segregate with the disease in three families, including one exhibiting a classical autosomal dominant inheritance pattern. Consistent with previous findings, protease-sensitive variant-positive patients were often characterized by early-onset disease and invariably experienced recurrent acute pancreatitis, although none has so far developed chronic pancreatitis.


Assuntos
Lipase , Pancreatite Crônica , Peptídeo Hidrolases , Humanos , Doença Aguda , Mutação , Pancreatite Crônica/genética , Pancreatite Crônica/metabolismo , Peptídeo Hidrolases/genética , Lipase/genética
10.
PLoS One ; 18(4): e0280976, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37093806

RESUMO

Non-invasive prenatal diagnosis of single-gene disorders (SGD-NIPD) has been widely accepted, but is mostly limited to the exclusion of either paternal or de novo mutations. Indeed, it is still difficult to infer the inheritance of the maternal allele from cell-free DNA (cfDNA) analysis. Based on the study of maternal haplotype imbalance in cfDNA, relative haplotype dosage (RHDO) was developed to address this challenge. Although RHDO has been shown to be reliable, robust control of statistical error and explicit delineation of critical parameters for assessing the quality of the analysis have not been fully addressed. We present here a universal and adaptable enhanced-RHDO (eRHDO) procedure through an automated bioinformatics pipeline with a didactic visualization of the results, aiming to be applied for any SGD-NIPD in routine care. A training cohort of 43 families carrying CFTR, NF1, DMD, or F8 mutations allowed the characterization and optimal setting of several adjustable data variables, such as minimum sequencing depth, type 1 and type 2 statistical errors, as well as the quality assessment of intermediate steps and final results by block score and concordance score. Validation was successfully performed on a test cohort of 56 pregnancies. Finally, computer simulations were used to estimate the effect of fetal-fraction, sequencing depth and number of informative SNPs on the quality of results. Our workflow proved to be robust, as we obtained conclusive and correctly inferred fetal genotypes in 94.9% of cases, with no false-negative or false-positive results. By standardizing data generation and analysis, we fully describe a turnkey protocol for laboratories wishing to offer eRHDO-based non-invasive prenatal diagnosis for single-gene disorders as an alternative to conventional prenatal diagnosis.


Assuntos
Ácidos Nucleicos Livres , Teste Pré-Natal não Invasivo , Gravidez , Feminino , Humanos , Haplótipos , Teste Pré-Natal não Invasivo/métodos , Diagnóstico Pré-Natal/métodos , Genótipo
12.
Blood Transfus ; 21(3): 209-217, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36346882

RESUMO

BACKGROUND: Discriminating individuals with "Asian type DEL" from those who are "true D-negative" (D-) among serologically D- donors/patients in Asia would be very valuable, as clinical outcomes are different in these groups. Here we investigated the molecular basis of D-negativity in Thai blood donors, designing a specific strategy for this purpose. MATERIALS AND METHODS: After routine testing, a total of 1,270 serologically D- blood donors originating from Central, Northeastern and South Thailand underwent analysis of the RHD gene by (i) quantitative multiplex polymerase chain reaction of short fluorescent fragments (QMPSF); (ii) direct sequencing of exon 9 to identify the c.1227G>A variant defining the Asian type DEL allele; and (iii) direct sequencing of the other exons. RESULTS: The most common observation was whole deletion of the gene (i.e. RHD*01N.01; allele frequency: 86.81%), followed by the Asian type DEL allele (RHD*01EL.01; 7.60%) and a D-negative hybrid allele (RHD*01N.03; 3.46%). Four novel alleles, including one with a 13.1 kilobase-deletion, were identified and characterized. All but one RHD*01EL.01 allele carriers (183/184) were C-positive (C+), suggesting that this latter subset may be screened specifically when investigating the c.1227G>A variant, which can be identified with 100% accuracy by a specific Tm-shift genotyping assay. DISCUSSION: On the basis of our extensive molecular findings, we have designed a dedicated diagnostic strategy based on Rh C antigen typing followed by a genotyping test. Implementation of this method in all or selected groups of serologically D- donors/patients will contribute to improve the management of transfusion and pregnancy in Thailand.


Assuntos
Doadores de Sangue , Antígenos de Grupos Sanguíneos , Humanos , Fenótipo , Tailândia/epidemiologia , Sistema do Grupo Sanguíneo Rh-Hr/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Alelos , Genótipo
13.
Hum Mutat ; 43(12): 2308-2323, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36273432

RESUMO

Modeling splicing is essential for tackling the challenge of variant interpretation as each nucleotide variation can be pathogenic by affecting pre-mRNA splicing via disruption/creation of splicing motifs such as 5'/3' splice sites, branch sites, or splicing regulatory elements. Unfortunately, most in silico tools focus on a specific type of splicing motif, which is why we developed the Splicing Prediction Pipeline (SPiP) to perform, in one single bioinformatic analysis based on a machine learning approach, a comprehensive assessment of the variant effect on different splicing motifs. We gathered a curated set of 4616 variants scattered all along the sequence of 227 genes, with their corresponding splicing studies. The Bayesian analysis provided us with the number of control variants, that is, variants without impact on splicing, to mimic the deluge of variants from high-throughput sequencing data. Results show that SPiP can deal with the diversity of splicing alterations, with 83.13% sensitivity and 99% specificity to detect spliceogenic variants. Overall performance as measured by area under the receiving operator curve was 0.986, better than SpliceAI and SQUIRLS (0.965 and 0.766) for the same data set. SPiP lends itself to a unique suite for comprehensive prediction of spliceogenicity in the genomic medicine era. SPiP is available at: https://sourceforge.net/projects/splicing-prediction-pipeline/.


Assuntos
Sítios de Splice de RNA , Splicing de RNA , Humanos , Teorema de Bayes , Splicing de RNA/genética , Éxons/genética , Sítios de Splice de RNA/genética , Aprendizado de Máquina , Íntrons/genética
14.
Clin Res Hepatol Gastroenterol ; 46(8): 101531, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36057185

RESUMO

Since the description of the PRSS1 gene encoding the cationic trypsinogen as being involved in dominant hereditary pancreatitis, more than 50 PRSS1 gene variants have been reported. Among those that have been classified as pathogenic, some have a high penetrance and others have a low penetrance. Assessing the clinical relevance of PRSS1 variants is often complicated in the absence of functional evidence and interpretation regarding rare variants is not very easy in clinical practice. The aim of this study was to review the PRSS1 variants and to classify them according to their degree of deleterious effect. This classification was based on the results of in vitro experiments and on population data, in comparing the allelic frequency of each variant in patients with pancreatitis and in unaffected individuals. This review should help geneticists and clinicians in charge of patient...s care and genetic counseling to interpret results of genetic studies.


Assuntos
Pancreatite Crônica , Tripsinogênio , Humanos , Mutação , Pancreatite Crônica/genética , Tripsina/genética , Tripsinogênio/genética
15.
Hum Genomics ; 16(1): 31, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974416

RESUMO

BACKGROUND: The American College of Medical Genetics and Genomics (ACMG)-recommended five variant classification categories (pathogenic, likely pathogenic, uncertain significance, likely benign, and benign) have been widely used in medical genetics. However, these guidelines are fundamentally constrained in practice owing to their focus upon Mendelian disease genes and their dichotomous classification of variants as being either causal or not. Herein, we attempt to expand the ACMG guidelines into a general variant classification framework that takes into account not only the continuum of clinical phenotypes, but also the continuum of the variants' genetic effects, and the different pathological roles of the implicated genes. MAIN BODY: As a disease model, we employed chronic pancreatitis (CP), which manifests clinically as a spectrum from monogenic to multifactorial. Bearing in mind that any general conceptual proposal should be based upon sound data, we focused our analysis on the four most extensively studied CP genes, PRSS1, CFTR, SPINK1 and CTRC. Based upon several cross-gene and cross-variant comparisons, we first assigned the different genes to two distinct categories in terms of disease causation: CP-causing (PRSS1 and SPINK1) and CP-predisposing (CFTR and CTRC). We then employed two new classificatory categories, "predisposing" and "likely predisposing", to replace ACMG's "pathogenic" and "likely pathogenic" categories in the context of CP-predisposing genes, thereby classifying all pathologically relevant variants in these genes as "predisposing". In the case of CP-causing genes, the two new classificatory categories served to extend the five ACMG categories whilst two thresholds (allele frequency and functional) were introduced to discriminate "pathogenic" from "predisposing" variants. CONCLUSION: Employing CP as a disease model, we expand ACMG guidelines into a five-category classification system (predisposing, likely predisposing, uncertain significance, likely benign, and benign) and a seven-category classification system (pathogenic, likely pathogenic, predisposing, likely predisposing, uncertain significance, likely benign, and benign) in the context of disease-predisposing and disease-causing genes, respectively. Taken together, the two systems constitute a general variant classification framework that, in principle, should span the entire spectrum of variants in any disease-related gene. The maximal compliance of our five-category and seven-category classification systems with the ACMG guidelines ought to facilitate their practical application.


Assuntos
Pancreatite Crônica , Inibidor da Tripsina Pancreática de Kazal , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Frequência do Gene , Testes Genéticos , Variação Genética , Genômica , Humanos , Pancreatite Crônica/genética , Análise de Sequência de DNA , Inibidor da Tripsina Pancreática de Kazal/genética , Estados Unidos
16.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35805969

RESUMO

The human genome is covered by 8% of candidate cis-regulatory elements. The identification of distal acting regulatory elements and an understanding of their action are crucial to determining their key role in gene expression. Disruptions of such regulatory elements and/or chromatin conformation are likely to play a critical role in human genetic diseases. Non-syndromic hearing loss (i.e., DFNB1) is mostly due to GJB2 (Gap Junction Beta 2) variations and DFNB1 large deletions. Although several GJB2 cis-regulatory elements (CREs) have been described, GJB2 gene regulation remains not well understood. We investigated the endogenous effect of these CREs with CRISPR (clustered regularly interspaced short palindromic repeats) disruptions and observed GJB2 expression. To decipher the GJB2 regulatory landscape, we used the 4C-seq technique and defined new chromatin contacts inside the DFNB1 locus, which permit DNA loops and long-range regulation. Moreover, through ChIP-PCR, we determined the involvement of the MEIS1 transcription factor in GJB2 expression. Taken together, the results of our study enable us to describe the 3D DFNB1 regulatory landscape.


Assuntos
Cromatina , Conexina 26 , Conexinas , Surdez , Proteína Meis1 , Cromatina/genética , Cromatina/metabolismo , Conexina 26/genética , Conexina 26/metabolismo , Conexinas/genética , Conexinas/metabolismo , Surdez/genética , Surdez/metabolismo , Humanos , Mutação , Proteína Meis1/genética , Proteína Meis1/metabolismo
17.
Bioorg Med Chem Lett ; 72: 128866, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35752380

RESUMO

The aminopyrrolidine amide PF-429242 is a specific inhibitor of the Site-1 Protease which is responsible for the cleavage, and thus the activation of the Activating Transcription Factor6 that down regulates many genes, during the Unfolded Protein Response. We hypothesized that PF-429242 could be used to prevent the ATF6-dependent down regulation of some genes. We chose the CFTR gene encoding the CFTR chloride channel as a model because it is down-regulated by ATF6 in Cystic Fibrosis. We evaluated the action of PF-429242 in human bronchial cells expressing the most frequent mutation of CFTR (p.Phe508del) found in patients. We observed that PF-429242 increases the synthesis of the mRNA and the protein encoded by the CFTR gene harbouring the mutation. We also observed that PF-429242 alleviates the defects of the p.Phe508del-CFTR channel in human Cystic Fibrosis cells. Our results suggest that aminopyrrolidine amide is a potential therapeutic target for Cystic Fibrosis that could also have beneficial effects in other diseases involving CFTR, such as the Chronic Obstructive Pulmonary Disease.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Amidas/farmacologia , Amidas/uso terapêutico , Cloretos/metabolismo , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Transporte de Íons
18.
J Inherit Metab Dis ; 45(5): 996-1012, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35621276

RESUMO

Mitochondrial complex V plays an important role in oxidative phosphorylation by catalyzing the generation of ATP. Most complex V subunits are nuclear encoded and not yet associated with recognized Mendelian disorders. Using exome sequencing, we identified a rare homozygous splice variant (c.87+3A>G) in ATP5PO, the complex V subunit which encodes the oligomycin sensitivity conferring protein, in three individuals from two unrelated families, with clinical suspicion of a mitochondrial disorder. These individuals had a similar, severe infantile and often lethal multi-systemic disorder that included hypotonia, developmental delay, hypertrophic cardiomyopathy, progressive epileptic encephalopathy, progressive cerebral atrophy, and white matter abnormalities on brain MRI consistent with Leigh syndrome. cDNA studies showed a predominant shortened transcript with skipping of exon 2 and low levels of the normal full-length transcript. Fibroblasts from the affected individuals demonstrated decreased ATP5PO protein, defective assembly of complex V with markedly reduced amounts of peripheral stalk proteins, and complex V hydrolytic activity. Further, expression of human ATP5PO cDNA without exon 2 (hATP5PO-∆ex2) in yeast cells deleted for yATP5 (ATP5PO homolog) was unable to rescue growth on media which requires oxidative phosphorylation when compared to the wild type construct (hATP5PO-WT), indicating that exon 2 deletion leads to a non-functional protein. Collectively, our findings support the pathogenicity of the ATP5PO c.87+3A>G variant, which significantly reduces but does not eliminate complex V activity. These data along with the recent report of an affected individual with ATP5PO variants, add to the evidence that rare biallelic variants in ATP5PO result in defective complex V assembly, function and are associated with Leigh syndrome.


Assuntos
Encefalopatias , Doença de Leigh , ATPases Mitocondriais Próton-Translocadoras , Encefalopatias/metabolismo , DNA Complementar/metabolismo , Humanos , Doença de Leigh/genética , Doença de Leigh/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , Mutação , Proteínas/metabolismo
19.
Pancreatology ; 22(5): 564-571, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35589511

RESUMO

OBJECTIVE: Non-alcoholic chronic pancreatitis (NACP) frequently develops in the setting of genetic susceptibility associated with alterations in genes that are highly expressed in the pancreas. However, the genetic basis of NACP remains unresolved in a significant number of patients warranting a search for further risk genes. DESIGN: We analyzed CUZD1, which encodes the CUB and zona pellucida-like domains 1 protein that is found in high levels in pancreatic acinar cells. We sequenced the coding region in 1163 European patients and 2018 European controls. In addition, we analyzed 297 patients and 1070 controls from Japan. We analyzed secretion of wild-type and mutant CUZD1 from transfected cells using Western blotting. RESULTS: In the European cohort, we detected 30 non-synonymous variants. Using different prediction tools (SIFT, CADD, PROVEAN, PredictSNP) or the combination of these tools, we found accumulation of predicted deleterious variants in patients (p-value range 0.002-0.013; OR range 3.1-5.2). No association was found in the Japanese cohort, in which 13 non-synonymous variants were detected. Functional studies revealed >50% reduced secretion of 7 variants, however, these variants were not significantly enriched in European CP patients. CONCLUSION: Our data indicate that CUZD1 might be a novel susceptibility gene for NACP. How these variants predispose to pancreatitis remains to be elucidated.


Assuntos
Proteínas de Membrana , Pancreatite Crônica , Zona Pelúcida , Células Acinares/metabolismo , Western Blotting , Predisposição Genética para Doença , Humanos , Proteínas de Membrana/genética , Pancreatite Crônica/genética , Pancreatite Crônica/patologia , Zona Pelúcida/metabolismo , Zona Pelúcida/patologia
20.
Cell Mol Gastroenterol Hepatol ; 14(1): 55-74, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35398595

RESUMO

BACKGROUND & AIMS: A hybrid allele that originated from homologous recombination between CEL and its pseudogene (CELP), CEL-HYB1 increases the risk of chronic pancreatitis (CP). Although suggested to cause digestive enzyme misfolding, definitive in vivo evidence for this postulate has been lacking. METHODS: CRISPR-Cas9 was used to generate humanized mice harboring the CEL-HYB1 allele on a C57BL/6J background. Humanized CEL mice and C57BL/6J mice were used as controls. Pancreata were collected and analyzed by histology, immunohistochemistry, immunoblotting, and transcriptomics. Isolated pancreatic acini were cultured in vitro to measure the secretion and aggregation of CEL-HYB1 protein. Mice were given caerulein injections to induce acute pancreatitis (AP) and CP. RESULTS: Pancreata from mice expressing CEL-HYB1 developed pathological features characteristic of focal pancreatitis that included acinar atrophy and vacuolization, inflammatory infiltrates, and fibrosis in a time-dependent manner. CEL-HYB1 expression in pancreatic acini led to decreased secretion and increased intracellular aggregation and triggered endoplasmic reticulum stress compared with CEL. The autophagy levels of pancreata from mice expressing CEL-HYB1 changed at different developmental stages; some aged CEL-HYB1 mice exhibited an accumulation of large autophagic vesicles and impaired autophagy in acinar cells. Administration of caerulein increased the severity of AP/CP in mice expressing CEL-HYB1 compared with control mice, accompanied by higher levels of endoplasmic reticulum stress. CONCLUSIONS: Expression of a humanized form of CEL-HYB1 in mice promotes endoplasmic reticulum stress and pancreatitis through a misfolding-dependent pathway. Impaired autophagy appears to be involved in the pancreatic injury in aged CEL-HYB1 mice. These mice have the potential to be used as a model to identify therapeutic targets for CP.


Assuntos
Ceruletídeo , Pancreatite Crônica , Doença Aguda , Alelos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Pancreatite Crônica/induzido quimicamente , Pancreatite Crônica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...